聚合计算

简单排序

对输入文件中数据进行排序。输入文件中的每行内容均为一个数字,即一个数据。要求在输出中每行有两个间隔的数字,其中,第一个代表原始数据在原始数据集中的位次,第二个代表原始数据。样例输入:

1)file1:
2
32
654
32
15
756
65223
2)file2:
5956
22
650
92
3)file3:
26
54
6
样例输出:
1 2
2 6
3 15
4 22
5 26
6 32
7 32
8 54
9 92
10 650
11 654
12 756
13 5956
14 65223

这个实例仅仅要求对输入数据进行排序,熟悉 MapReduce 过程的读者会很快想到在 MapReduce 过程中就有排序,是否可以利用这个默认的排序,而不需要自己再实现具体的排序呢?答案是肯定的。

但是在使用之前首先需要了解它的默认排序规则。它是按照 key 值进行排序的,如果 key 为封装 int 的 IntWritable 类型,那么 MapReduce 按照数字大小对 key 排序,如果 key 为封装为 String 的 Text 类型,那么 MapReduce 按照字典顺序对字符串排序。

了解了这个细节,我们就知道应该使用封装 int 的 IntWritable 型数据结构了。也就是在 map 中将读入的数据转化成 IntWritable 型,然 后作为 key 值输出(value 任意)。reduce 拿到之后,将输入的 key 作为 value 输出,并根据 value-list 中元素的个数决定输出的次数。输出的 key(即代码中的 linenum)是一个全局变量,它统计当前 key 的位次。需要注意的是这个 程序中没有配置 Combiner,也就是在 MapReduce 过程中不使用 Combiner。这主要是因为使用 map 和 reduce 就已经能够完成任务 了。

public class Sort {
//map将输入中的value化成IntWritable类型,作为输出的key
public static class Map extends
        Mapper<Object, Text, IntWritable, IntWritable>
{
private static IntWritable data = new IntWritable();
//实现map函数
public void map(Object key, Text value, Context context)
throws IOException, InterruptedException {
String line = value.toString();
data.set(Integer.parseInt(line));
context.write(data, new IntWritable(1));
}
}
//reduce将输入中的key复制到输出数据的key上,
//然后根据输入的value-list中元素的个数决定key的输出次数
//用全局linenum来代表key的位次
public static class Reduce extends
Reducer<IntWritable, IntWritable, IntWritable, IntWritable> {
private static IntWritable linenum = new IntWritable(1);
//实现reduce函数
public void reduce(IntWritable key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException {
for (IntWritable val : values) {
context.write(linenum, key);
linenum = new IntWritable(linenum.get() + 1);
}
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
//这句话很关键
conf.set("mapred.job.tracker", "192.168.1.2:9001");
String[] ioArgs = new String[]{"sort_in", "sort_out"};
String[] otherArgs = new GenericOptionsParser(conf, ioArgs).getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println("Usage: Data Sort <in> <out>");
System.exit(2);
}
Job job = new Job(conf, "Data Sort");
job.setJarByClass(Sort.class);
//设置Map和Reduce处理类
job.setMapperClass(Map.class);
job.setReducerClass(Reduce.class);
//设置输出类型
job.setOutputKeyClass(IntWritable.class);
job.setOutputValueClass(IntWritable.class);
//设置输入和输出目录
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}